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Abstract

Measuring blood flow speed in the optical diffusive regime in humans has been a long standing 

challenge for photoacoustic tomography. In this work, we proposed a cuffing-based method to 

quantify blood flow speed in humans with a handheld photoacoustic probe. By cuffing and 

releasing the blood vessel, we can measure the blood flow speed downstream. In phantom 

experiments, we demonstrated that the minimum and maximum measurable flow speeds were 

0.035 mm/s and 42 mm/s, respectively. In human experiments, flow speeds were measured in 

three different blood vessels: a radial artery in the right forearm, a radial artery in the index finger 

of the right hand, and a radial vein in the right forearm. Taking advantage of the handheld probe, 

our method can potentially be used to monitor blood flow speed in the clinic and at the bedside.
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Blood flow mapping provides important information for the diagnosis and treatment of 

many diseases, such as stroke[1] and atherosclerosis[2]. Doppler ultrasound (US) is the most 

frequently used technique to measure blood flow in humans. However, because of the poor 

ultrasonic scattering contrast between blood and extravascular tissue, Doppler US cannot 

measure slow blood flow, which limits its use mainly to evaluating blood flow in the major 

arteries and veins[3]. Optical methods, such as Doppler optical coherence tomography[4] and 

laser speckle flowmetry[5], cannot measure blood flow in humans in the optical diffusive 

regime due to the limited penetration of ballistic photons in biological tissue[6].

With high blood detection contrast and deep penetration [6–10], photoacoustic tomography 

(PAT) may provide a way to measure slow blood flow in the diffusive regime in humans. In 

PAT, short light pulses, usually from a laser, excite the target[7]. Following absorption of the 

light, an initial temperature rise induces a pressure rise due to the photoacoustic (PA) effect. 

The pressure rise then propagates as a PA wave and is finally detected by an ultrasonic 

transducer. Each laser pulse yielded a one-dimensional depth-resolved PA image (A-line) by 

recording the time course of PA signals. Because blood absorbs visible light much more 

strongly than most other tissue components, PAT can detect blood with high contrast. In 

Correspondence: lhwang@wustl.edu. 

HHS Public Access
Author manuscript
J Biophotonics. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
J Biophotonics. 2016 March ; 9(3): 208–212. doi:10.1002/jbio.201500181.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition, by detecting ultrasonic signals, which have much lower scattering than optical 

signals in tissue, PAT can image deep with high spatial resolution. So far, PAT has detected 

blood vessels in vivo at 3.5 cm depth[11].

Many PAT-based methods have been proposed to measure blood flow. In 2007, Fang et al. 

developed Doppler PA flowmetry to measure flowing particles[12]. Different from Doppler 

US, which detects scattering-based signals, Doppler PA detects absorption-based signals, 

and calculates the flow velocity based on their frequency shift. However, this method can 

measure only sparse particles, and it becomes less accurate when the detection axis is 

perpendicular to the flow direction. In 2009, the same group reported M-mode PA 

flowmetry[13], which estimated the flow speed by quantifying the “slow-time” PA amplitude 

changes due to the moving particle. Note that the “slow-time” PA amplitude is defined as a 

series of maximum PA amplitudes from an A-line sequence. This method enabled 

measuring flow perpendicular to the detection axis. Based on similar ideas, time-domain PA 

auto-correlation[14] and frequency-domain PA Doppler bandwidth broadening[15] were 

proposed to measure blood flow in mice in vivo. To eliminate the measurement error 

resulting from the particle size, cross-correlation based PA flowmetry[16, 17] was introduced 

and also demonstrated in mice. For human imaging, however, because vessels are often 

more deeply embedded than they are in mice, PAT images these vessels with significantly 

degraded spatial resolutions[18, 19]. As the detection voxel size increases, there is a 

corresponding decrease in the slow-time PA signal changes due to the flowing particles or 

red blood cells[20]. When these changes are smaller than the other PA signal changes 

induced by, for example, thermal noise, it is difficult to extract flow information. In the end, 

none of existing methods has yet been applied to humans.

In this work, we present a cuffing-based method to measure blood flow speed in humans. 

Aided by a common sphygmomanometer, PAT successfully measured blood flow in humans 

for the first time. This procedure has three steps. First, a window along the blood vessel of 

interest is imaged. Second, the blood flow upstream of the window is stopped by cuffing the 

blood vessel with the sphygmomanometer. A high pressure (220 mg Hg in our experiments) 

is maintained in the cuff for a short time (e.g., 10 seconds) until there is almost no blood left 

in the vessel in the imaging window. Finally, the sphygmomanometer is quickly released, 

and the blood flow speed is calculated by monitoring the blood wash-in process.

To test our method, we employed a commercialized linear-array-transducer based PAT 

system[21, 22] (Vevo LAZR, VisualSonics, Toronto, ON, Canada), as shown in Fig. 1(a–b). 

A Nd:YAG laser combined with an optical parameter oscillator provided tunable 

illumination wavelengths from 680 nm to 970 nm. To achieve deep penetration, 850 nm was 

chosen for our experiments. The laser pulse had a width around 10 ns and a repetition rate of 

20 Hz. The light was coupled to an optical fiber bundle that was divided into two rectangular 

fiber bundles (20 mm × 1.25 mm) with an illumination angle of 60° toward the tissue 

surface. The incident pulse fluence was around 5 mJ/cm2, below the safety limit set by the 

American National Standards Institute for this wavelength. A 256-element linear-array-

transducer, with a central frequency of around 21 MHz (one-way bandwidth, 78%) and a 

size of 20 mm × 3 mm, detected ultrasonic signals. The array and the fiber bundles were 

aligned coaxially and confocally to maximize the system’s sensitivity. Because the data 
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acquisition system contained only 64 channels, a 4:1 electronic multiplexer was used to 

acquire ultrasonic signals from all the transducer elements. Thus, with a 20 Hz laser, the 

two-dimensional frame rate was reduced to 5 Hz to obtain a full-width image. However, the 

frame rate could be increased up to 20 Hz with fewer receiving channels and thus a smaller 

field of view (FOV). In our experiments, a frame rate of 10 Hz was used with a FOV of 

about 12 mm × 10 mm, along the axial and lateral directions of the array, respectively.

We first conducted phantom experiments to demonstrate the feasibility of our method for 

measuring blood flow speed in the diffusive regime. As shown in Fig. 1(c), to mimic a 

deeply embedded blood vessel, silastic tubing with an inner diameter of 300 μm 

(11-189-15E, Fisher Scientific, Houston, TX) was overlaid by a piece of chicken breast 

tissue with a 2 mm thickness. Fresh bovine blood (910, QUAD FIVE INC., Ryegate, MT) 

was flowed inside the tubing at different speeds controlled by a syringe pump (BSP-99M, 

Braintree Scientific, Braintree, MA). As shown in Figs. 2(a)–(b), the blood wash-in process 

at different flow speeds could be accurately imaged. In those images, each column 

represents the one-dimensional PA amplitude image of the tubing in the FOV at a given time 

point. With increasing time, more blood flowed into the tubing in the imaging window. By 

quantifying how fast the blood front moved, the flow speed could be calculated, as shown in 

Fig. 2(c). As shown in Fig. 2(d), the measured flow speed agreed well with the preset values. 

The measured minimum flow speed was 0.035 mm/s, which is smaller than the typical blood 

flow speed in capillaries in humans and also slower than the lowest flow speed that Doppler 

US can measure, i.e., 1 mm/s[3]. We also tested the maximum measurable flow speed. To 

measure the moving speed of the blood front, we have to at least image it twice. Thus, based 

on current frame rate (10 Hz) and FOV (10 mm along the tubing direction), in theory our 

maximum measurable flow speed should be around 50 mm/s. However, as shown in Fig. 

2(e), as the preset flow speed increased, the measurement error increased as well, which was 

probably due to the decreased number of times that the blood front was imaged. In our 

experiment, the maximum measured flow speed was around 42 mm/s.

We then performed human experiments to show the capability of our method for measuring 

blood flow speed in vivo. As shown in Fig. 3, there were three different imaging sites in our 

human experiments — a radial artery in the right forearm, a radial artery in the index finger 

of the right hand, and a radial vein in the right forearm. As shown in Figs. 3(a) and (b), the 

upper arm was cuffed by the sphygmomanometer to measure the blood flow speed in the 

radial arteries in the forearm and finger. To measure venous flow speed, instead of cuffing, 

we directly compressed the radial vein close to the wrist and monitored a downstream 

location of the same vein, as shown in Fig. 3(c). All methods and experimental procedures 

were carried out in accordance with the guidelines of The Institutional Review Board of 

Washington University in St. Louis. All experimental protocols were approved by The 

Institutional Review Board of Washington University in St. Louis.

As shown in Figs. 4(a)–(c), the cuffing and releasing processes for all tested locations were 

clearly imaged. Before cuffing the vessel, both the top and bottom walls of the vessel could 

be detected. After cuffing, the blood vessel almost completely disappeared in the PA 

images. Once the cuff was released, the blood vessel appeared again. The recovery speed 

depended on the blood flow speed: For the big artery, the recovery process was the fastest; 
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while for the vein, the process was the slowest. The whole cuffing and releasing process in 

these three blood vessels can be observed in Videos 1 (forearm radial artery), 2 (index finger 

radial artery), and 3 (forearm radial vein). Based on the same procedure as in the phantom 

experiments, the flow speeds in these blood vessels were calculated to be around 44 mm/s 

(forearm radial artery), 20 mm/s (index finger radial artery), and 10 mm/s (forearm radial 

vein). The measured blood flow speeds were close to the flow speeds measured with US 

Doppler, which were 50 mm/s, 18 mm/s, and 9.3 mm/s, respectively. Based on the 

experimental results, we conclude that our cuffing-based PA method can measure blood 

flow in humans in both big and small blood vessels.

When the blood vessel is completely cuffed, there is almost no detectable blood in the 

downstream but blood accumulates under pressure upstream of the cuffing spot. Thus, the 

initial post-release blood wash-in process is a surge, which diminishes to normal flow with 

increased distance from the cuffing spot. In our measurements, we sought to avoid surge 

effects by setting the downstream imaging locations at ~ 5 cm for the vein flow 

measurement and more than 30 cm for arterial measurements.

In summary, for the first time to our knowledge, we measured blood flow speed in humans 

with PAT. By cuffing and releasing the targeted blood vessels, the flow information could 

be extracted. In phantom experiments, the minimum and maximum measurable flow speeds 

with the current system were experimentally quantified to be around 0.035 mm/s and 42 

mm/s, respectively. We further applied our method to measure both arterial and venous flow 

speeds in humans. Because we used a handheld photoacoustic probe, our method can easily 

be used to detect blood flow speed both in the clinic and at home.

Acknowledgments

The authors would like to thank Guo Li, Alejandro Garcia-Uribe, and Jun Ma for experimental assistance and 
helpful discussion, and Prof. James Ballard for manuscript editing. This work was sponsored in part by National 
Institutes of Health grants DP1 EB016986 (NIH Director’s Pioneer Award), R01 CA186567 (NIH Director’s 
Transformative Research Award), R01 EB016963, S10 RR026922, and R01 CA159959. L.W. has a financial 
interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.

References

1. Zhu XH, Chen JM, Tu TW, Chen W, Song SK. Simultaneous and noninvasive imaging of cerebral 
oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. Neuroimage. 
2013; 64:437–447. [PubMed: 23000789] 

2. Beraia M, Beraia G. Investigation of the Blood Flow at the Boundary Layer by the Magnetic 
Resonance Angiography in Atherosclerosis. Atherosclerosis. 2014; 235(2):E156–E156.

3. Tchacarski V. Atlas of diagnostic ultrasound. 2015

4. Zhao YH, Chen ZP, Saxer C, Xiang SH, de Boer JF, Nelson JS. Phase-resolved optical coherence 
tomography and optical Doppler tomography for imaging blood flow in human skin with fast 
scanning speed and high velocity sensitivity. Opt Lett. 2000; 25(2):114–116. [PubMed: 18059800] 

5. Ayata C, Dunn AK, Gursoy-Ozdemir Y, Huang ZH, Boas DA, Moskowitz MA. Laser speckle 
flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J 
Cerebr Blood F Met. 2004; 24(7):744–755.

6. Wang LHV, Gao L. Photoacoustic Microscopy and Computed Tomography: From Bench to 
Bedside. Annu Rev Biomed Eng. 2014; 16:155–185. [PubMed: 24905877] 

Zhou et al. Page 4

J Biophotonics. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Wang LHV, Hu S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. 
Science. 2012; 335(6075):1458–1462. [PubMed: 22442475] 

8. Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011; 1(4):602–631. [PubMed: 
22866233] 

9. Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to 
detect melanoma depth in vivo. Opt Lett. 2014; 39(16):4731–4734. [PubMed: 25121860] 

10. Hai PF, Yao JJ, Maslov KI, Zhou Y, Wang LHV. Near-infrared optical-resolution photoacoustic 
microscopy. Opt Lett. 2014; 39(17):5192–5195. [PubMed: 25166107] 

11. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LHV. Deeply penetrating in vivo 
photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express. 2010; 1(1):
278–284. [PubMed: 21258465] 

12. Fang H, Maslov K, Wang LV. Photoacoustic doppler effect from flowing small light-absorbing 
particles. Phys Rev Lett. 2007; 99(18)

13. Fang H, Wang LHV. M-mode photoacoustic particle flow imaging. Opt Lett. 2009; 34(5):671–
673. [PubMed: 19252588] 

14. Chen SL, Xie ZX, Carson PL, Wang XD, Guo LJ. In vivo flow speed measurement of capillaries 
by photoacoustic correlation spectroscopy. Opt Lett. 2011; 36(20):4017–4019. [PubMed: 
22002371] 

15. Yao JJ, Maslov KI, Shi YF, Taber LA, Wang LHV. In vivo photoacoustic imaging of transverse 
blood flow by using Doppler broadening of bandwidth. Opt Lett. 2010; 35(9):1419–1421. 
[PubMed: 20436589] 

16. Zhou Y, Liang JY, Maslov KI, Wang LHV. Calibration-free in vivo transverse blood flowmetry 
based on cross correlation of slow time profiles from photoacoustic microscopy. Opt Lett. 2013; 
38(19):3882–3885. [PubMed: 24081077] 

17. Liang JY, Zhou Y, Maslov KI, Wang LHV. Cross-correlation-based transverse flow measurements 
using optical resolution photoacoustic microscopy with a digital micromirror device. J Biomed 
Opt. 2013; 18(9)

18. Wang, LV.; Wu, H. Biomedical Optics: Principles and Imaging. WILEY; 2007. 

19. Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014; 2(2):87–101. 
[PubMed: 25302158] 

20. Zhou Y, Yao J, Maslov KI, Wang LV. Calibration-free absolute quantification of particle 
concentration by statistical analyses of photoacoustic signals in vivo. J Biomed Opt. 2014; 19(3):
37001. [PubMed: 24589987] 

21. Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS. 
Development and Initial Application of a Fully Integrated Photoacoustic Micro-Ultrasound 
System. Ieee T Ultrason Ferr. 2013; 60(5):888–897.

22. Zhou Y, Li G, Zhu L, Li C, Cornelius LA, Wang LV. Handheld photoacoustic probe to detect both 
melanoma depth and volume at high speed in vivo. J Biophotonics. 2015; 1(7)

Zhou et al. Page 5

J Biophotonics. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Photographs of the PAT system (a) and the linear-array-transducer (b). The workstation has 

a 64-channel data acquisition system, a data processing system, and an image display 

interface. (c) A schematic of the array in the phantom experiments.
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Fig. 2. 
Phantom experiments. PA signal amplitude versus lateral position x and time t measured at 

different preset flow speeds: (a) 0.14 mm/s and (b) 1.1 mm/s. (c) Time course of the blood 

fronts in (a) and (b), where the slope of each linear fit directly represents the flow speed. (d) 

Log-log plot of the measured flow speeds versus the preset values. (e) Semi-log plot of the 

relative errors of the measured speeds in (d).
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Fig. 3. 
Photographs of the human experiments with imaging sites at a forearm radial artery (a), an 

index finger radial artery (b), and a forearm radial vein (c).
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Fig. 4. 
Human experiments. Representative PA images of a forearm radial artery (a), an index 

finger radial artery (b), and a forearm radial vein (c) before cuffing, during cuffing, and after 

releasing. The yellow dashed lines indicate the blood vessel regions.
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